297 research outputs found

    Theoretical and computational modeling of rna-ligand interactions

    Get PDF
    Ribonucleic acid (RNA) is a polymeric nucleic acid that plays a variety of critical roles in gene expression and regulation at the level of transcription and translation. Recently, there has been an enormous interest in the development of therapeutic strategies that target RNA molecules. Instead of modifying the product of gene expression, i.e., proteins, RNAtargeted therapeutics aims to modulate the relevant key RNA elements in the disease-related cellular pathways. Such approaches have two significant advantages. First, diseases with related proteins that are difficult or unable to be drugged become druggable by targeting the corresponding messenger RNAs (mRNAs) that encode the amino acid sequences. Second, besides coding mRNAs, the vast majority of the human genome sequences are transcribed to noncoding RNAs (ncRNAs), which serve as enzymatic, structural, and regulatory elements in cellular pathways of most human diseases. Targeting noncoding RNAs would open up remarkable new opportunities for disease treatment. The first step in modeling the RNA-drug interaction is to understand the 3D structure of the given RNA target. With current theoretical models, accurate prediction of 3D structures for large RNAs from sequence remains computationally infeasible. One of the major challenges comes from the flexibility in the RNA molecule, especially in loop/junction regions, and the resulting rugged energy landscape. However, structure probing techniques, such as the “selective 20-hydroxyl acylation analyzed by primer extension” (SHAPE) experiment, enable the quantitative detection of the relative flexibility and hence structure information of RNA structural elements. Therefore, one may incorporate the SHAPE data into RNA 3D structure prediction. In the first project, we investigate the feasibility of using a machine-learning-based approach to predict the SHAPE reactivity from the 3D RNA structure and compare the machine-learning result to that of a physics-based model. In the second project, in order to provide a user-friendly tool for RNA biologists, we developed a fully automated web interface, “SHAPE predictoR” (SHAPER) for predicting SHAPE profile from any given 3D RNA structure. In a cellular environment, various factors, such as metal ions and small molecules, interact with an RNA molecule to modulate RNA cellular activity. RNA is a highly charged polymer with each backbone phosphate group carrying one unit of negative (electronic) charge. In order to fold into a compact functional tertiary structure, it requires metal ions to reduce Coulombic repulsive electrostatic forces by neutralizing the backbone charges. In particular, Mg2+ ion is essential for the folding and stability of RNA tertiary structures. In the third project, we introduce a machine-learning-based model, the “Magnesium convolutional neural network” (MgNet) model, to predict Mg2+ binding site for a given 3D RNA structure, and show the use of the model in investigating the important coordinating RNA atoms and identifying novel Mg2+ binding motifs. Besides Mg2+ ions, small molecules, such as drug molecules, can also bind to an RNA to modulate its activities. Motivated by the tremendous potential of RNA-targeted drug discovery, in the fourth project, we develop a novel approach to predicting RNA-small molecule binding. Specifically, we develop a statistical potential-based scoring/ranking method (SPRank) to identify the native binding mode of the small molecule from a pool of decoys and estimate the binding affinity for the given RNA-small molecule complex. The results tested on a widely used data set suggest that SPRank can achieve (moderately) better performance than the current state-of-art models

    Spring Contact Model of Tape Peeling: A Combination of the Peel-Zone Approach and the Kendall Approach

    Get PDF
    Energy-based and force-based approaches are two basic ways to establish an adhesion model. For the adhesion of tape-like thin films, the Kendall equation considers the overall energy balance but inherently contains little information of the peel zone geometry and stress distribution. The peel zone model provides an empirical approximate of the peel front from the approach of a force description and coincides well with experimental results for a wide range of peel angles. However, the peel-zone model itself has not been unified with the Kendall equation yet. We propose a two-layer spring contact tape peeling model which considers the balance between the stretching force of the backing layer and the adhesive force transferred through the adhesive layer. The model provides an analytic shape description of the curved bifurcation region of the peel front. An approximate analytic solution of the peel force reduces to the Kendall equation by considering a Kendall-like energy conservation critical criterion, which further supports the proposed model. Further analysis of the relationship between the length of the peel zone and the adhesive force provides insight into the validity of the peel zone model. The proposed model provides a new insight in the tape peeling process and mathematically builds a potential bridge between the Kendall model and the peel-zone model

    A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms

    Get PDF
    We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms ( SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds ( a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines - in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore